
configure script familiar to anyone
installing software directly from source.
As mentioned earlier, m4 allows us to
easily define our own macros, and this is
the feature we will focus on. We will
learn how to hide layout specifics, long-
winded code or arcane syntax behind
our own simple macros.

How m4 can help you write
HTML
There are no (to the author’s knowledge)
ready-made macros for writing HTML,
so we we will have to write them ourself.

At this point you may ask “What’s the
point then? I may as well be writing the
HTML code in the usual way, instead of
using this m4 mumbo-jumbo!” The
astute reader would, of course, be 100%
correct in this observation. However,
read on as the benefits will be explained
in the next couple of paragraphs. 
Consider a snip of HTML you write a lot;
a simple example is the code for creating
links. Chances are it will be  like this:

<a href="http://www.w3.org">U
www.w3.org</a>

40 November 2002 www.linux-magazine.com

We will cover the basics of m4
by separating out content and
layout of HTML web pages.

The techniques shown are not by any
means restricted to HTML, but are
applicable elsewhere as well.

Before we begin…
Very basic knowledge of HTML would be
beneficial, but should not be necessary to
read and comprehend the material 
covered in this article. It is m4’s 
capabilities as a macro processor 
language the author wishes to communi-
cate; HTML was chosen because it is
something most people should be at least
vaguely familiar with.

What is m4?
m4 is a macro processor used by
Sendmail and GNU Autoconf, etc.
Sendmail relies on m4 for creating its
(in)famous sendmail.cf configuration file
while Autoconf uses m4 to create the

m4 is a macro language used for text processing. It simply copies its input to its output, while expanding built-in or

user-defined macros. It can also capture output from standard Linux commands. BY STIG BRAUTASET

GNU m4

Creating HTML pages

GNU m4KNOW HOW

When splitting the content from the layout of web pages, the author prefers to call the common
macro file for html.m4.The content of each page goes in a file with the ending “.mac”, e.g.
index.mac and so on.When explaining this, however, we develop our macro and .mac files bit by
bit, so we need to refer to several different files.Thus it is convenient to name them first.m4,
first.mac and so on.

See the sidebar “Joining the content and layout”how to create the resulting HTML file from the
macros and the content.

Naming conventions



Now, what if we instead define a simple
macro that will allow us to write

__elink(www.w3.org)

and let m4 do the tedious job of filling in
the necessary bits? That’s less than half
the number of characters already. 
Additionally, observe that we only had to
write the link name once, so there is less
chance of us spelling it wrong.

Another example is if we have a note
on our page telling visitors the date of
the last update. It is tedious work 
searching through all the files you have
changed, searching for and updating
date stamps. Instead we can simply
define a macro named, say, __today that
will expand into today’s date. The
search-and-replace business will then be
taken care of for us automatically. How
to do this will be shown later; we need to
take care of the basics first.

Getting your hands dirty
As mentioned earlier, m4 allow us to
define our own macros with ease. The
command to let us do this is cunningly
named define. Here’s how to define a
macro to let us use the link shorthand
above:

define(__link, U

<a href="http://$*">$*</a>)

The part before the comma (but inside
the parentheses) is the macro name, and
the part after the comma is the macro

body. We will refer to the whole line as
the macro definition. The definition line
above in English: “Define a new macro
named __link. Everywhere where this
macro occurs, substitute the macro name
for the body of the macro, but substitute
the macro’s arguments (whatever is
inside the parentheses following the
macro name) for “$*” wherever “$*”
occurs in the macro body.”

We will store the macros we write 
ourselves, such as the above, in a file
called html.m4. Se sidebar “Comments:
documenting our macros” for details
about how we can mix comments and
macros in this file.

It’s worth noting that macro names do
not have to start with two underscores. It
is just a convention, because we need to
make sure that we do not pick a string
that naturally occurs in the text. 
Otherwise we may get spurious 
replacements of the macro.

Multiple arguments and
quoting
The define command we used above
expects two arguments; the new macro
name, and what to replace the macro
name with. Considering again the 
example with the __link macro above,
what should we do if we don’t want to
use the URL as the visible, “clickable”
link? We could simply create a new
macro that takes several arguments, and
invoke it thus (in context this time, just
to show that it is possible): “Here is
__link2(www.w3.org, a link to w3.org).
It is an informative website.” Here’s how
to define such a beast:

define(__link2, U

<a href="http://$1">$2</a>)

The only change is that we now have
“$1” and “$2” instead of “$*”. “$1” and
“$2” refer to the first and the second
argument of our macro. The arguments
are separated by the comma character.

So, Sherlock, what now if we want to
create a macro that can take an 
argument with a comma in it? That, my
good Watson, is simple. We just have to
put quote the argument. When you
quote something, everything between
the quote-characters will be treated as a
single argument, even if it consist in
entirety of a string of, say, 90 commas.
The default opening quote is a “`” 
(back-tick) and the default closing quote
is a “‘” (single quote). We can now
invoke __link2 with a comma in the 
second argument thus:

__link2(www.gnu.org, U

'www.GNU.org, the home of much U

software')

The second comma is now quoted, so
the macro is indeed invoked with only
two arguments. Note that only one layer

41www.linux-magazine.com November 2002

KNOW HOWGNU m4

Here’s how you create the resulting
index.html from the macro definitions in
html.m4 and the content in index.mac:

$ m4 html.m4 index.mac >
index.html
This invokes the m4 processor with two 
arguments.The m4 command will take the
macro definitions it finds,do the necessary
substitutions and output the result on its
standard output.However,we make use of
the shell’s redirection facilities to make the
output go to a file instead of the screen (if
this makes no sense to you,just tag along
and follow the directions,but you should
consider reading up on shell basics).Now
open first.html in a browser,and voil! We
have a web page!

Joining the content and
layout

If a macro is not self-explanatory, we would
like to put an explanatory comment along
side the macro definition. m4 naturally
allows us to do this; it provides the built-in
dnl which reads and discards all characters,
up to and including the first newline.

dnl I am an example comment.
dnl I am highly unhelpful,
dnl but 100% correct.
Using dnl as part of a string does not exhibit
this behaviour.

Comments: documenting
our macros

<html>
<head>
<meta http-equiv="Content-Type"U
content= "text/html; charset=iso-U
8859-1">
<meta name="description" U

content="Sample HTML page">
<meta name="keywords" U

content="gnu m4 html">
<meta name="author" content="U
Stig Brautaset">
<title>sample html page</title>
</head>
<body>
<p>Hello, World</p>
</body>
</html>

Listing 1: sample.html

__title({Hello World, HTML U

version})
<h1>Hello World</h1>
<p>Look at this link: U

__link(www.w3.org)</p>
<p>Last updated: __today</p>
</body>
</html>

Listing 2: first.mac



and can even be called several times
from the same file. 
The effect is immediate, but only for this
invokation of m4. The author strongly
advocates that you stick to one set of
quotes, as it quickly becomes rather
hairy having to remember which quotes
go where.

The quoting “characters”, by the way,
need not be single characters; you may
use “{([whoopee->” as your opening
quote if you wish. Neither is there any
need for the closing quote to correspond
logically to the opening quote. It is just a
convention, and makes the macros 
easier to read 3 months hence.

changequote({,}) dnl change U

quote character
dnl create a link with the U

link name specified specifically
define(__link2, U

<a href="http://$1">$2</a>)

With a html.m4 containing the 
definitions shown above we can invoke
our __link2 macro thus:

__link2(www.w3.org, {w3.org, U

a site well worth reading})

Enough basics, let’s do some real work
With HTML, there’s always a lot of

stuff that needs to be set up at the top of
each page. If you have more than, say, 
2-3 pages that have a similar layout (but
with optionally different <title> tags
etc.) then you will probably want to 
create a macro for all this stuff. We will
consider the sample HTML page shown
in listing 1, and see how we can get a
similar result using our newfound
macro-skills.

After creating the necessary macros,
listing 2 shows the content of the 
file first.mac. This is the mixture of
HTML and macro calls that together 
with our macro definitions enables us to 

produce the resulting HTML in listing 1.
We already know how to create the
__title and the __link macros, the only
new addition is the macro __today 
mentioned above. This macro uses m4’s

42 November 2002 www.linux-magazine.com

of quotes (the outermost) are stripped by
m4, so the apostrophe in the following
invokation will not yield an error:

__link2(www.gnu.org, U

'GNU, RMS's pet hobby-horse')

The author usually changes the default
quote characters into “{” and “}” for
readability and ease of typing. The 
command for changing the quote 
characters, with an appropriate com-
ment attached (see the “Comments:
documenting our macros” sidebar), is:

changequote({,}) dnl U

change the quote characters

changequote takes two arguments, the
new opening and closing quotes 
respectively. It can be called at any time,

GNU m4KNOW HOW

changequote({,}) U 

dnl change quote character
dnl two macros for link-creation.
define(__link, U 

<a href="http://$*">$*</a>)
define(__link2, U

<a href="http://$1">$2</a>)
dnl abstract away all the layout U

cruft at the beginning.
define(__title, {
<html>
<head>
<meta http-equiv=U

"Content-Type" content=
"text/html; charset=U

iso-8859-1">
<meta name="description" U

content="Sample HTML page">
<meta name="keywords" U

content="gnu m4 html">
<meta name="author" U

content="Stig Brautaset">
<title>$1</title>
</head>
<body>
}) dnl the __title macro U 

ends here
dnl use built-in 'esyscmd' to call the
standard Linux 'date'
dnl utility and have its output
replaced with the '__today'
dnl macro name. The date will be on
the form "Sun 16 Jun 2002"
define(__today, esyscmd(date '+%a %d
%b %Y'))

Listing 3: first.m4

__title2({Hello World, U 

HTML version}, {
<h1>Hello World</h1>
<p>Look at this link: U

__link(www.w3.org)</p>
<p>Last updated: __today</p>

})

Listing 4: second.m4

changequote({,}) U 

dnl change quote character
dnl two macros for link-creation.
define(__link, U

<a href="http://$*">$*</a>)
define(__link2, U

<a href="http://$1">$2</a>)
dnl abstract away all the U

layout cruft at the beginning.
define(__title, {
<html>
<head>
<meta http-equiv=U 

"Content-Type" content=
"text/html; charset=U

iso-8859-1">
<meta name="description" U

content="Sample HTML page">
<meta name="keywords" U

content="gnu m4 html">
<meta name="author" U

content="Stig Brautaset">
<title>$1</title>
</head>
<body>
$1
</body>
</html>
}) dnl the __title macro U 

ends here
dnl use built-in ‘esyscmd’to call the 
standard Linux ‘date’dnl utility and have its
output replaced with the ‘__today’dnl
macro name.The date will be on the form
“Sun 16 Jun 2002”define(__today,
esyscmd(date ‘+%a %d %b %Y’))

Listing 5: second.m4

define(__index) dnl allows U

conditional processing of the U

page
__title2({Hello World, HTML U

version}, {
<h1>Hello World</h1>
__menu
<p>Look at this link: U

__link(www.w3.org)</p>
<p>Last updated: __today</p>

})

Listing 6: third.mac,25



capability to call standard Linux tools,
and puts the output of the said 
command (“date” in this case) into the
text. Listing 3 shows the full content of
first.m4. This contains all the macro 
definitions required by first.mac which is
found in listing 2.

More abstraction
Looking at the code in listing 2, you may
not want to write the closing </body>

and </html> tags either, and indeed
you don’t have to. m4 allows macros to
be nested, thus we can use a macro
within another macro. The result is
shown in listing 4. Witness that the
__title2 macro takes two arguments, the
first being the page title and the second
being the full page body. Be careful
when you go to these lengths of 
abstraction though, as it is easy to miss
out the closing “})” at the end of the file
if you do extensive updates.

The change to listing 3 to facilitate this
is shown in listing 5.

More advanced macros
Up till now, we have only looked at fairly
simple search-and-replace macros. These
work fine, but consider if we have a 
collection of pages, with a common
menu. We could put the whole menu in
a macro of the type we have used before,
but then the pages would include a link
to itself as well as all others, and this is
not very elegant. A solution, of course, is
to just cut-and-paste the menu in to the
individual files and change each file to
not make a link to itself. This, however,
is very tedious. The solution? Use m4’s
built-in conditionals.

In each source file we define a macro
that identifies that file. In index.mac we
define, say, __index. The built-in 
conditional “ifdef” can then use these
macro definitions to decide whether to
take special actions on this file. The
menu could then be something like this:

define(__menu, {
<p>MENU<br>
ifdef({__index}, index, U

__rlink(index.html, index)) <br>
ifdef({__pics}, pictures, U

__rlink(pics.html, pictures))
</p>

})

The two ifdef lines are new to us. They
first check whether a certain macro
name is defined (observe that the first
argument of ifdef has to be quoted). If
the macro name is undefined, the third
argument will be input into the text, and
the second argument will be ignored.
The use of the __menu macro is shown
in listing 6.

The __rlink macro is also new. Its
name stands for relative link in that it
does not prepend http:// to the link. It is
shown in listing 7, which is the final
macro listing file.

Summary
We have seen how to use m4 to create
macros to help us maintain HTML pages.
We went from very simple one-line 
substitution macros, like __link and
__link2, to bigger but still very simple
macros of the same type, like __title.
From there, we went on to using m4’s
built-in ability to capture the output of
system commands when we created the
__today macro. Lastly we used m4’s
built-in conditionals to create a __menu
macro that expands into a different
menu on each page. ■

43www.linux-magazine.com November 2002

KNOW HOWGNU m4

changequote({,}) U

dnl change quote character
define(__link, U 

<a href="http://$*">$*</a>)
define(__link2, U

<a href="http://$1">$2</a>)
define(__rlink, U

<a href="$1">$2</a>)
dnl abstract away all the U

layout cruft at the beginning.
define(__title2, {
<html>
<head>
<meta http-equiv=U

"Content-Type" content=
"text/html; charset=U

iso-8859-1">
<meta name="description" U

content="Sample HTML page">
<meta name="keywords" U

content="gnu m4 html">
<meta name="author" U

content="Stig Brautaset">
<title>$1</title>
</head>
<body>
$2
</body>
</html>
})
dnl use built-in ‘esyscmd’to call the 
standard Linux ‘date’dnl utility and have its
output replaced with the ‘__today’dnl
macro name.The date will be on the form
“Sun 16 Jun 2002”

define(__today, esyscmdU 

(date '+%a %d %b %Y'))
define(__menu, {
<p>
ifdef({__index}, index, U

__rlink(index.html, index)) <br>
ifdef({__pics}, pictures, U

__rlink(pics.html, pictures))
</p>

})

Listing 7: third.m4

If you’ve opened any of the HTML files you’ve
created from the macro and content files,
you’ve probably found that there’s a lot of
unnecessary white-space in them.This is OK,
since excessive white-space is simply ignored
by web browsers. If you’re a pedantic zealot
like the author,you’ll want your source to be
beautiful on its own as well.

Enter “tidy”, an HTML validating, correcting
and pretty-printing program. Simply invoke
tidy on your HTML files thus: tidy -im
first.html and the file will be audited and
printed prettily. See the sidebar “Links and
resources”for where to get tidy.

Using tidy to clean up the
mess

[1] GNU m4: more information about the m4 
macro processor can be found at
http://www.gnu.org/software/m4/m4.html

[2]HTML tidy: get your HTML cleaned up and 
validated 
http://www.w3.org/People/Raggett/tidy/

INFO

Stig Brautaset, born in
Norway, is the
founder of the Linux
Society at the
University of
Westminster. He is
currently in his last
year of a BSc Artificial Intelligence
degree. His interests largely revolves
around computer programming –
from e-mail spam filters to games.
Regularly spending much time on IRC
he can be found there under the nick
“Skuggan”or “Skugg”.

T
H

E
 A

U
T

H
O

R


